Exercise 38

In Exercises 29-40, test for symmetry with respect to each axis and to the origin.

$$
y=\frac{x^{5}}{4-x^{2}}
$$

Solution

Replacing x with $-x$ changes the equation, so there's no symmetry with respect to the y-axis.

$$
y=\frac{(-x)^{5}}{4-(-x)^{2}}=\frac{-x^{5}}{4-x^{2}}=-\frac{x^{5}}{4-x^{2}}
$$

Replacing y with $-y$ changes the equation, so there's no symmetry with respect to the x-axis.

$$
-y=\frac{x^{5}}{4-x^{2}} \quad \rightarrow \quad y=-\frac{x^{5}}{4-x^{2}}
$$

Replacing x with $-x$ and y with $-y$ does not change the equation, so there is symmetry with respect to the origin.

$$
-y=\frac{(-x)^{5}}{4-(-x)^{2}} \quad \rightarrow \quad-y=\frac{-x^{5}}{4-x^{2}} \quad \rightarrow \quad y=\frac{x^{5}}{4-x^{2}}
$$

